留言板

尊敬的读者、作者、审稿人, 关于本刊的投稿、审稿、编辑和出版的任何问题, 您可以本页添加留言。我们将尽快给您答复。谢谢您的支持!

姓名
邮箱
手机号码
标题
留言内容
验证码

基于RPCA的激光点云道路标牌几何信息提取方法

柯昀皓 黄玉春 吴梓健

柯昀皓, 黄玉春, 吴梓健. 基于RPCA的激光点云道路标牌几何信息提取方法[J]. 交通信息与安全, 2024, 42(2): 76-86. doi: 10.3963/j.jssn.1674-4861.2024.02.008
引用本文: 柯昀皓, 黄玉春, 吴梓健. 基于RPCA的激光点云道路标牌几何信息提取方法[J]. 交通信息与安全, 2024, 42(2): 76-86. doi: 10.3963/j.jssn.1674-4861.2024.02.008
KE Yunhao, HUANG Yuchun, WU Zijian. A Geometric Information Extraction Method of Road Signs in LiDAR Point Cloud Based on RPCA[J]. Journal of Transport Information and Safety, 2024, 42(2): 76-86. doi: 10.3963/j.jssn.1674-4861.2024.02.008
Citation: KE Yunhao, HUANG Yuchun, WU Zijian. A Geometric Information Extraction Method of Road Signs in LiDAR Point Cloud Based on RPCA[J]. Journal of Transport Information and Safety, 2024, 42(2): 76-86. doi: 10.3963/j.jssn.1674-4861.2024.02.008

基于RPCA的激光点云道路标牌几何信息提取方法

doi: 10.3963/j.jssn.1674-4861.2024.02.008
基金项目: 

国家自然科学基金项目 41671419

详细信息
    作者简介:

    柯昀皓(2002—),硕士研究生. 研究方向:激光点云分类方法. E-mail: 2019302130260@whu.edu.cn

    通讯作者:

    黄玉春(1977—),博士,教授. 研究方向:激光点云分类方法. E-mail: hycwhu@whu.edu.cn

  • 中图分类号: U491.5+2

A Geometric Information Extraction Method of Road Signs in LiDAR Point Cloud Based on RPCA

  • 摘要: 道路标牌的位置、尺寸等几何参数普查是交通资产管理、无人驾驶等应用的关键环节。车载激光扫描三维点云中路牌不仅占比小,而且受周围树木干扰大,导致边缘点云缺失且包含大量噪声。为了准确提取点云中标牌杆和平面的位置和几何信息,提出了两阶段杆状物点云分割方法,由粗及细提取出标牌杆及其相连的标牌平面点云簇;进而通过鲁棒主成分分析(robust principal component analysis,RPCA)排除标牌周围噪声和杂点干扰,结合点云簇形态分析得到独立的主杆体和标牌平面2个部件;再引入环状域生长拟合圆柱体,法向量投影采样与定向包围盒(oriented bounding box,OBB)紧致拟合标牌平面,分别得到主杆体和标牌的准确几何信息。实验采集了湖北省武汉市洪山区、高新区和武昌区34个不同路口下的激光点云数据,在KPConv点云分割网络下进行训练与验证,准确率达到90.31%,标牌精确度达到91.07%,召回率达到了92.74%;并对上述数据中的20个路口的98个道路标牌进行几何信息提取,有效提取率达到89.80%,位置精度达到0.062 1 m,几何误差达到8.07%。实验表明:该方法能有效排除点云噪声和杂点干扰,实现对点云缺失在20%以内的标牌的有效提取。

     

  • 图  1  道路标牌几何信息提取流程

    Figure  1.  Geometric information extraction process of road sign

    图  2  道路标牌点云提取流程

    Figure  2.  Point cloud extraction process of road signs

    图  3  道路标牌激光点云数据异常

    Figure  3.  Abnormal occurrence of road sign laser point cloud data

    图  4  点云鲁棒主成分分析示意

    Figure  4.  Robust principal component analysis of point cloud

    图  5  垂直度阈值对照试验

    Figure  5.  Verticality threshold control test

    图  6  基于RPCA点云形态信息的部件分割

    Figure  6.  Part segmentation based on RPCA point cloud morphology information

    图  7  道路标牌几何信息提取

    Figure  7.  Geometric information extraction of road signs

    图  8  道路标牌的点云姿态

    Figure  8.  Posture of the road signs point-cloud

    图  9  剩余部分点云的聚类合并

    Figure  9.  Clustering of the remaining point clouds

    图  10  圆形标牌与方形标牌

    Figure  10.  Round signs and square signs

    图  11  AABB式包围盒与OBB式包围盒

    Figure  11.  axis-aligned bounding box and oriented bounding box

    图  12  网格投影采样

    Figure  12.  Grid projection sampling of road signs

    图  13  点云采集设备

    Figure  13.  Sensor equipment of LiDAR

    图  14  数据集采集区域概览

    Figure  14.  Overview of the datasets and the region

    图  15  KPConv网络验证集的语义分割结果

    Figure  15.  Segmentation of KPConv network on validation set

    图  16  AGConv与KPConv具体分割效果对比

    Figure  16.  The comparison of AGConv and KPConv in segmentation effect

    图  17  道路标牌几何参数提取总流程

    Figure  17.  Process of extracting geometric parameters of road signs

    图  18  普通道路标牌几何信息提取结果与量测结果对比

    Figure  18.  Comparison of geometric information extraction results and measurement results of common road sign

    图  19  小型道路标牌几何信息提取结果与量测结果对比

    Figure  19.  Comparison of geometric information extraction results and measurement results of small road sign

    图  20  缺损圆形道路标牌几何信息提取结果与量测结果对比

    Figure  20.  Comparison of geometric information extraction results and measurement results of Defective round road sign

    表  1  几何信息提取数据集中标牌形态分布

    Table  1.   Morphological distribution of road signs in the dataset

    数据集 路口数 方形标牌数 圆形标牌数 标牌总数
    武昌区 6 14 6 20
    八一路 5 18 8 26
    高新区 9 31 21 52
    总计 20 63 35 98
    下载: 导出CSV

    表  2  标牌提取运行环境

    Table  2.   Operating environment of sign extraction

    项目 型号
      CPU 12th Gen Intel Core i5-12490F
      GPU NVIDIA GeForce RTX 4060Ti 16GB
      操作系统 Ubuntu 22.04
      Python 3.8
      CUDA 11.6
      cudnn 8.9.6
      Pytorch 1.13.1
    下载: 导出CSV

    表  3  混淆矩阵中的样例预测组合

    Table  3.   Sample predictions in the confusion matrix

    真实类型 预测类型
    背景点 杆状物 树木
      背景点 A B C
      杆状物 D E F
      树木 G H I
    下载: 导出CSV

    表  4  测试集下KPConv与AGConv的精度指标对比

    Table  4.   Evaluation of KPConv and AGConv on test set

    分割网络 准确度/% 精度/% 召回率/%
    标牌 树木 标牌 树木
    KPConv 90.31 91.07 81.50 92.74 99.26
    AGConv 90.34 77.54 82.39 95.57 98.67
    下载: 导出CSV

    表  5  道路标牌几何信息提取效果

    Table  5.   Geometric information extraction effect of road signs

    采集区域 路口数标牌数 位置精度/m 几何误差/% 有效提取率/% 总用时/s
    八一路1 2 9 0.082 3 10.91 88.89 1 016
    八一路2 3 17 0.072 1 10.20 88.23 4 284
    武昌区 6 20 0.053 4 6.31 90.00 5 179
    高新区 9 52 0.057 5 7.57 90.38 22 594
    汇总 20 98 0.062 1 8.07 89.80 33 073
    下载: 导出CSV

    表  6  道路标牌几何信息提取有效提取率对比

    Table  6.   Comparison of the effective extraction rate in geometric information extraction of road signs

    方法 有效提取率/%
    本文 89.80
    文献[12] 88.78
    文献[15] 85.71
    下载: 导出CSV

    表  7  点云缺失下道路标牌几何信息提取效果

    Table  7.   Geometric information extraction effect of road signs based on defective point cloud

    缺失程度 数据示例 精度
    完整 位置精度/m 0.046 1
    几何误差/% 4.70
    约5% 位置精度/m 0.059 5
    几何误差/% 7.39
    约10% 位置精度/m 0.082 1
    几何误差/% 11.07
    约20% 位置精度/m 0.096 4
    几何误差/% 15.80
    30%以上 位置精度/m 0.132 6
    几何误差/% 21.51
    下载: 导出CSV
  • [1] MATTHEW V, MEDHAT M. Deep learning for intelligent transportation systems: a survey of emerging trends[J]. IEEE Transactions on Intelligent Transportation Systems. 2020, 21(8): 3152-3168. doi: 10.1109/TITS.2019.2929020
    [2] 林述涛. 面向多源数据融合的交通基础设施数字化架构研究[J]. 公路交通科技, 2018, 35(9): 122-127, 145. https://www.cnki.com.cn/Article/CJFDTOTAL-GLJK201809018.htm

    LIN S T. Study on digital architecture of transportation infrastructure for multi-source data fusion[J]. Journal of Highway and Transportation Research and Development. 2018, 35(9): 122-127, 145. (in Chinese) https://www.cnki.com.cn/Article/CJFDTOTAL-GLJK201809018.htm
    [3] HUANG P D, CHENG M, CHEN Y P, et al. Traffic sign occlusion detection using mobile laser scanning point clouds[J]. IEEE Transactions on Intelligent Transportation Systems, 2017, 18(9): 2364-2376. doi: 10.1109/TITS.2016.2639582
    [4] GARGOUM S, El-BASYOUNY K, SABBAGH J, et al. Automated highway sign extraction using lidar data[J]. Transportation Research Record, 2017, 2643(1): 1-8. doi: 10.3141/2643-01
    [5] 黄明, 车平文, 韦朋成. 道路点云中交通标志牌的识别提取研究[J]. 测绘科学, 2023, 48(2): 115-123. https://www.cnki.com.cn/Article/CJFDTOTAL-CHKD202302015.htm

    HUANG M, CHE P W, WEI P C. Research on recognition and extraction of traffic signs in road point cloud[J]. Science of Surveying and Mapping, 2023, 48(2): 115-123. (in Chinese) https://www.cnki.com.cn/Article/CJFDTOTAL-CHKD202302015.htm
    [6] GARGOUM S, El-BASYOUNY K. Automated extraction of road features using LiDAR data: a review of LiDAR applications in transportation[C]. 4th International Conference on Transportation Information and Safety(ICTIS). Banff, Canada: IEEE, 2017.
    [7] 瓮升霞, 陈一平. 基于移动激光点云的交通标志牌特征提取[J]. 厦门大学学报(自然科学版), 2016, 55(4): 580-585. https://www.cnki.com.cn/Article/CJFDTOTAL-XDZK201604023.htm

    WENG S X, CHEN Y P. Road-traffic-sign detection from mobile LiDAR point clouds[J]. Journal of Xiamen University (Natural Science), 2016, 55(4): 580-585. (in Chinese) https://www.cnki.com.cn/Article/CJFDTOTAL-XDZK201604023.htm
    [8] JAVANMARDI M, SONG Z, QI X. Automated traffic sign and light pole detection in mobile LiDAR scanning data[J]. IET Intelligent Transport Systems, 2019, 13(5): 803-815. doi: 10.1049/iet-its.2018.5360
    [9] YANG B S, DONG Z, ZHAO G, et al. Hierarchical extraction of urban objects from mobile laser scanning data[J]. ISPRS Journal of Photogrammetry and Remote Sensing, 2015, 99: 45-57. doi: 10.1016/j.isprsjprs.2014.10.005
    [10] PLACHETKA C, FRICKE J, KLINGNER M, et al. DNN-based recognition of pole-like objects in LiDAR point clouds[C]. 2021 IEEE International Intelligent Transportation Systems Conference(ITSC). Indianapolis, The United States of America: IEEE, 2021.
    [11] PARK J, KIM C, KIM S, et al. PCSCNet: Fast 3D semantic segmentation of LiDAR point cloud for autonomous car using point convolution and sparse convolution network[J]. Expert Systems with Applications, 2023, 212: 118815. doi: 10.1016/j.eswa.2022.118815
    [12] CELESTINO O, CARLOS C, ENOC S-A. Automatic detection and classification of pole-like objects for urban cartography using mobile laser scanning data[J]. Sensors, 2017, 17(7): 1465. doi: 10.3390/s17071465
    [13] HUANG P D, CHEN Y P, LI J, et al. Extraction of street trees from mobile laser scanning point clouds based on subdivided dimensional features[C]. 2015 IEEE International Geoscience and Remote Sensing Symposium(IGARSS). Milan, Italy: IEEE, 2015.
    [14] TRUONG-HONG L, LINDENBERGH R C, VERMEIJ M J. Efficient sparse street furniture extraction from mobile laser scanning point clouds[J]. The International Archives of the Photogrammetry, Remote Sensing and Spatial Information Sciences, 2022, 48(4): 161-168.
    [15] WEN C L, LI J, LUO H, et al. Spatial-related traffic sign inspection for inventory purposes using mobile laser scanning data[J]. IEEE Transactions on Intelligent Transportation Systems, 2015, 17(1): 27-37.
    [16] 朱云涛, 李飞, 胡钊政, 等. 基于3D点云语义地图表征的智能车定位[J]. 交通信息与安全, 2021, 39(6): 143-152. https://www.cnki.com.cn/Article/CJFDTOTAL-JTJS202106017.htm

    ZHU Y T, LI F, HU Z Z, et al. A localization method for intelligent vehicles based on semantic map representation extracted from 3D cloud points[J]. Journal of Transport Information and Safety, 2021, 39(6): 143-152. (in Chinese) https://www.cnki.com.cn/Article/CJFDTOTAL-JTJS202106017.htm
    [17] THOMAS H, QI C R, DESCHAUD J E, et al. KPConv: flexible and deformable convolution for point clouds[C]. the IEEE/CVF International Conference on Computer Vision. Seoul, Korea: IEEE, 2019.
    [18] CAND S E J, LI X, MA Y, et al. Robust principal component analysis[J]. Journal of the ACM (JACM), 2011, 58(3): 1-37.
    [19] WEI M Q, WEI Z Y, ZHOU H R, et al. Agconv: Adaptive graph convolution on 3d point clouds[J]. IEEE Transactions on Pattern Analysis and Machine Intelligence, 2023, 45(8): 9374 - 9392.
    [20] HUANG Y C, MA P, JI Z, et al. Part-based modeling of pole-like objects using divergence-incorporated 3-D clustering of mobile laser scanning point clouds[J]. IEEE Transactions on Geoscience and Remote Sensing, 2020, 59(3): 2611-2626.
    [21] HE S W, LIU B l. Review of bounding box algorithm based on 3D point cloud[J]. International Journal of Advanced Network, Monitoring and Controls, 2021, 6(1): 18-23.
  • 加载中
图(20) / 表(7)
计量
  • 文章访问数:  120
  • HTML全文浏览量:  68
  • PDF下载量:  2
  • 被引次数: 0
出版历程
  • 收稿日期:  2023-10-24
  • 网络出版日期:  2024-09-14

目录

    /

    返回文章
    返回